Study on ATM enhancement and Simulation software design

Wei Lu
Radio Engineering Department
Southeast University

A dissertation submitted for the degree of Bachelor of Engineering

June 2000
ACKNOWLEDGEMENT

I would like to thank my supervisor, Dr. Xiangning Chen. It was my great pleasure to work under his guidance.

Thanks for my labmates, Qiong Guo, Xiaodan Wang, for their warm discussion and useful suggestions.

Last but not the least, I would like to thank the National Mobile Commun. Res. Lab for providing me such an excellent research environment.
ABSTRACT

The ATM technique was designed to achieve the goal of integration of multiple service, high quality of service, reliable transmission and high-speed network. However, some of its shortcomings weaken its abilities to applications. The fatal one is its low efficiency when supporting data traffic. To keep its existence, the original standard must be upgraded.

The main work of this paper made an attempt to improve the standard ATM protocol and bring forward a next-generation ATM protocol. By defining a novel cell structure, new ATM reinforces the end-to-end error control ability, and greatly increases the data transmission efficiency. The introduction of micro cell further enhances the support of low-speed real-time service. A simulation platform based on the ns simulator, Linux OS and PC was built. These discrete event-driven simulations focus on CBR, Web, FTP transmission delays and link utilizations in both wired and wireless environments. The simulation results of the new protocol were analyzed. The results showed that, these modifications can overcome the shortcomings of the existing ATM protocol and upgrade its ability to support more services efficiently.

Key Words:
Internet, ATM, TCP/IP, Simulation, ns simulator, Linux
CONTENT

Study on ATM enhancement and Simulation software design .. 1

ACKNOWLEDGEMENT ... 2

ABSTRACT .. 3

CONTENT .. 4

Chapter 1. Introduction ... 6

1.1 Basic principle of ATM .. 6

1.1.1 B-ISDN protocol reference Model ... 6

1.1.2 ATM Cell structure ... 7

1.1.3 ATM Classes of Services and ATM Adaptation Layer (AAL) 7

1.2 Internet and its protocols ... 8

1.2.1 A brief History of the Internet .. 8

1.2.2 TCP/IP protocol ... 9

1.2.3 IPng : Ipv6 .. 12

1.3 The combination of TCP/IP and ATM .. 13

1.3.1 Current situation ... 13

1.3.2 Local Network Emulation (LANE) ... 14

1.3.3 Classical IP over ATM (CIPOA) .. 16

1.3.4 Multiprotocol Over ATM (MPOA) ... 18

1.3.5 Multiprotocol Label Switching (MPLS) ... 18

Chapter 2. Study on the next generation ATM .. 20

2.1 ATM’s Failure ... 20

2.2 Basic considerations .. 21

2.3 Cell structure ... 22

2.4 Cell structure definition .. 26

2.5 Switching Policy .. 27

2.6 Traffic Management .. 28

Chapter 3. The simulation platform ... 32
3.1 The event-driven simulation mechanism .. 32
3.2 VNSim software design .. 33
 3.2.1 Theory .. 33
 3.2.2 Software design .. 34
3.3 ns simulator ... 35
 3.3.1 Introduction ... 36
 3.3.2 How to get the ns ... 37
 3.3.3 Installation on Linux ... 37
 3.3.4 Analysis to the design of the ns .. 38
 3.3.5 Use of the ns ... 41
 3.3.6 Extending the ns .. 42
 3.3.7 Shortcomings of the ns ... 43
3.4 Extensions to the ns and the realization of the next generation ATM
 protocol .. 43
 3.4.1 New ATM Cell .. 43
 3.4.2 Implementation of the new Agents .. 44
 3.4.3 Other modifications ... 45
 3.4.4 Experience and conclusion .. 46
Chapter 4. Simulations for the next generation ATM .. 48
 4.1 Integrated services simulations ... 48
 4.1.1 Simulation scene ... 48
 4.1.2 Simulation results .. 49
 4.2 Wireless network simulation .. 54
 4.2.1 Summary .. 54
 4.2.2 Simulation model .. 55
 4.2.2 Simulation result ... 56
CONCLUSION .. 59
REFERENCES .. 60
Chapter 1. Introduction

As the social and economy develop, the demand of people for information increases rapidly. For example, communication services develop from narrow band telephone and data to broadband video and multi-media. Existing network cannot satisfy the development of these broadband services. The requirement to build a network with broadband and few limits is urgent. On the technical option of construction broadband network, there are a lot of choices. IP and ATM are the most important of them.

1.1 Basic principle of ATM

ATM (Asynchronous Transfer Mode) is a technology that has its history in the development of broadband ISDN in the 1970s and 1980s. Technically, it can be viewed as an evolution of packet switching and utilizes fixed-length cells to carry different types of traffic and hardware switching to achieve high performance. ATM technology had been selected by ITU-T as the new tool for voice, data, television and multi-media transmission and the foundation of Broadband Integrated Services Digital Network (B-ISDN).

1.1.1 B-ISDN protocol reference Model

In the I.321 recommendation of ITU-T, B-ISDN protocol reference model has been defined. It looks like the following picture.

![Figure 1.1 B-ISDN protocol reference model](image)
This reference model is divided into three planes. The User plane (U-plane) provides the transfer of user application information. In Figure 1.1, the U-plane contains all of the ATM layers. The next plane in this model is the Control plane (C-plane). The C-plane provides the control functions necessary for call connection and release as well as functions for switched services. The C-plane shares the Physical and ATM layers with the U-plane, and contains AAL functions dealing with signaling. The final plane is the Management plane (M-plane). This plane provides the management functions and the capability to transfer information between the C and U-plane. The M-plane contains two sections, Layer and Plane Management. The Layer Management performs layer-specific management functions, while the Plane Management deals with the complete system.

1.1.2 ATM Cell structure

CCITT defines ATM\(^1\) as follows: ATM is a kind of transfer model, in which information are formatted by cells. The appearance of cells that contain pieces of information does not need to be periodical. In this point, this kind of transfer model is asynchronous. In this definition, ATM cell is the basic unit of service management. The cells with fixed-length consist of 48 bytes (8 bits per byte) of payload and 5 bytes of cell header. The fixed cell size ensures that long data frames or packets do not adversely affect time-critical information such as voice or video. The header is organized for efficient switching in high-speed hardware implementations and carries payload-type information, virtual-circuit identifiers, and header error check.

1.1.3 ATM Classes of Services and ATM Adaptation Layer (AAL)

There are the five classes of service defined for ATM (as per ATM Forum UNI 4.0 specification). The QoS parameters for these services are summarized in the following table.

<table>
<thead>
<tr>
<th>Service Class</th>
<th>Quality of Service Parameter</th>
<th>AAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant bit rate (CBR)</td>
<td>This class is used for emulating circuit switching. The cell rate is constant with time. CBR applications are quite sensitive to cell-delay variation. Examples of applications that can use CBR are telephone traffic (i.e., n*64 kbps), videoconferencing, and television</td>
<td>AAL1</td>
</tr>
<tr>
<td>Variable bit rate-non-real time (VBR-NRT)</td>
<td>This class allows users to send traffic at rate that varies with time depending on the availability of user information. Statistical multiplexing is provided to make optimum use of network resources. Multimedia e-mail is an example of VBR-NRT</td>
<td>AAL2</td>
</tr>
<tr>
<td>Variable bit rate--real time (VBR-RT)</td>
<td>This class is similar to VBR-NRT but is designed for applications that are sensitive to cell-delay variation. Examples for RT VBR are voice with speech activity detection (SAD) and interactive compressed video</td>
<td>AAL2</td>
</tr>
<tr>
<td>Available bit rate (ABR)</td>
<td>This class of ATM services providers rate-based flow control and is aimed at data traffic such as file transfer and e-mail. Although the standard does not require the cell transfer delay and cell-loss ratio to be guaranteed or minimized, it’s desirable for switches to minimize delay and loss as much as possible. Depending upon the state of congestion in the network, the source is required to control its rate. The user are allowed to declare a minimum cell rate, which is guaranteed to the connection by the network.</td>
<td>AAL3,4 / AAL5</td>
</tr>
<tr>
<td>Unspecified bit rate (UBR)</td>
<td>This class is the catch-all, other class and is widely used today for TCP/IP.</td>
<td>AAL3,4 / AAL5</td>
</tr>
</tbody>
</table>

1.2 Internet and its protocols

1.2.1 A brief History of the Internet

Internet is the present largest computer network in the world. The history of Internet can be traced back to 1969, Advanced Research Projects Agency (ARPA) of American Department of Defense established the APARNET. As ARPANET grew out of a military-only network to add subnetworks in universities, corporations, and user communities, it became known as the Internet. There is no single network called the Internet, however. The term refers to the collective network of subnetworks. The one thing they all have in common is TCP/IP as a communications protocol.

Now, almost thirty years after the first designs, there are thousands of networks comprising the internet, serving an estimated 45 million computers and 150 million users. By the end of 1996, according to incomplete statistical, this network has included more than 100 countries in the world and the commercial activity on network has exceeded 6.5 billion dollars.

The internet in China also has achieved great progress. The first unit that connected to the internet in China was the Institute of High Energy Physics, Chinese Academy of Sciences (www.ihep.ac.cn). Today, there are two other networks
connecting to the internet in China. They are Chinese educational research network (CERNET) and the ChinaNet which provides public services. The ChinaNet is managed by Ministry of Posts and Telecommunications. It is the backbone network of Chinese internet and the only network which can carry out the commercial activities. In the ChinaNet, the regional distribution of Post and Telecommunications Ministry take the responsibility for the connection of end-user to Internet as the Internet Service Providers (ISP). From these ISPs, end-users have variable choices such as dial-up, ISDN, ADSL, etc. The basic services that Internet now offers include electronic mail (Email), remote terminal (Telnet), file transmission (FTP-File Transfer Protocol), electronic bulletin board system (BBS), news (Usenet), document retrieve (Archie), keyword inquiry WAIS(Wide Area Information Service), menu retrieve (Gopher), interactive information retrieve WWW(World Wide Web) and so on.

1.2.2 TCP/IP protocol

TCP/IP's architecture

TCP/IP is the most successful network architecture and protocol set. It shields the discrepancy of various physical networks, make Internet a unified computer network. The Internet architecture and the position of TCP/IP are showed in Fig.1.2 and Fig.1.3.
TCP/IP is a family of protocols that has the similar behavior. Using the term TCP/IP usually refers to one or more protocols within the family, not just TCP and IP. This family includes IP, ICMP, TCP, UDP, SMTP, FTP, ARP/RARP and hundreds of other protocols. Figure 1.4 shows a rough mapping of TCP/IP to the OSI layers.

IP protocol

The Internet protocol (IP) is a connectionless datagram protocol. It assembles the data units (TPDU) from transmission layer to IP datagrams and send it to the lower layer. On other hand, it processes the IP datagrams from network interface layer and transfers them to the higher layer. It features:

1. Delivery without connection. To reach the highest transmission efficiency, it has nothing to do with flow control or reliability.
2. Routing of a datagram. IP is a protocol for machine-to-machine communications.
The Address Resolution Protocol (ARP/RARP) provides a mechanism for IP device to locate the hardware address of other devices, and the IP address of a datagram locates the next hop of the transmission.

3. Error control. IP usually work together with Internet Control Message Protocol (ICMP). ICMP is responsible for checking and generating messages on the status of devices on a network. But how to handle the error messages is determined by specific applications.

TCP Protocol

Transmission Control Protocol (the TCP part of TCP/IP) provides reliable transfer of data based on IP protocol. It is responsible for assembling data passed from higher-layer applications into standard packets and ensuring that the data is transferred correctly. An example of encapsulation of data packets for Ethernet is showed in Fig.1.5

Since TCP is based on unreliable IP protocol, it realizes the reliability by itself. This work includes the following aspects:

1. TCP acts as a message-validation protocol and handles the retransmission to guarantee the reliability.
2. TCP implementation usually performs a simple flow control using a sliding window whose length and the transmission of data packets in which are controlled by ACK signals of TCP protocol.
3. The end-to-end congestion control is also based on sliding window mechanism.

1.2.3 IPng : Ipv6

The crisis of IPv4

When IP version 4 (the current release) was developed, the use of a 32-bit IP address seemed more than enough to handle the projected use of the Internet. With the incredible growth rate of the Internet over the last few years, however, the 32-bit IP address became a problem. To counter this limit, IP Next Generation, usually called IP version 6 (IPv6), is under development.

IPv6

The first proposals for the next generation of IP were documented in the usual manner for Internet enhancements – a Request For Comments (RFC number 1752) issues in 1994. It tooks a year for these proposlas to be finished which finally happened in July 1995. Jan. 1996 saw the detailed proposals including 5 RFCs, RFC 1883,1884,1885,1886 and 1933. Comparing with IPv4 (RFC-791), major change and characteristic include:

- 128-bit network address instead of 32-bit
- More efficient IP header with extensions for applications and options
- No header checksum
- A flow label for quality-of-service requirements
- Prevention of intermediate fragmentation of datagrams
- Built-in security for authentication and encryption

IPv6 datagram header

The variation of the protocol is obvious by comparing the variation of the diagram header layouts, which is shown in the Figure 1.6.
1.3 The combination of TCP/IP and ATM

1.3.1 Current situation

The Internet originates from a particular network for the military purpose. Its major aim was to interconnect a lot of different physical network, to highly abstract the lower transmission layers to make it possible for one machine to communicate with another machine in another sub-network without any knowledge of that sub-network, and to provide the non-stop service as far as possible by the best effort principle. Along with the wide and deep application of the internet, more and more limitations of above design principle have been found. For example, the design considered only the features of computer data transmissions. Complete end-to-end flow control and the best effort principle cannot provide the real quality of service (QoS). The addressing mechanism cannot realize point to multi-points or multi-points to multi-points delivery.

On the other hand, the ATM technology designed by the cooperation of the traditional telecommunications industry (ITU-T) and the computer industry (ATM-Forum) overcomes most of above shortcomings. First, ATM is the only technology that can provide absolute QoS guarantee now. The RSVP solution based on IP can only offer relative QoS, and the realization of QoS guarantee still depends on in the traffic condition on then. Second, ATM network can not only deliver IP traffic, but also support Frame Relay, PBX and other traditional synchronous service. It has the intrinsic support for multi-services. Third, ATM can build reticular net,
which increase the stability and the resistance of attack of network greatly. IP network can only construct tree structure network, otherwise it will form the fatal routing circle. Finally, using the advanced properties of PNNI, ATM can realize self-healing and the fast reestablishment of connection, traffic equalization on multiple links, network loading balance, and QoS routing.

Practically, the next generation of network must support not only the traditional telecommunications services but also the increasing Internet service. It must have the ability to offer comprehensive business. The traditional packet switching computer network has the ability that offers asynchronous communication. While the telecommunications networks based on time-division multiplexing and the circuit switching technology offer the ability of real time communication. ATM technology is the effort to unify these two patterns, support more services and raise the utilization rate of network. Therefore, how to mix the traditional IP and ATM technology together is the focus of research.

The combination of IP and ATM technology divide into two models. One of them is the overlapping model and the other is integrated model. In September 1997, Japanese NTT company has again made a new model which is called coreprotocol. ITU-T SG 13 is doing research on it now.

In overlapping model, IP packets transmit using the ATM routing and signal protocols based on ATM address. The ATM layer is responsible for address resolution. In the integrated model, the end equipments should be located by IP addresses and the IP packets must be routed with existing routing protocols such as OSPF. The ATM connection is established by nonstandard signaling protocol. Integrated model need not carry out address resolution, but it makes the ATM switcher must support multiple routing protocols. This will increase the complexity of ATM switcher greatly.

Some examples of the two models are introduced in the following.

1.3.2 Local Network Emulation (LANE)

LANE enables using existing LAN protocols on ATM network. It describes how
to use the ATM network as the backbone network to interconnect the existing LAN, as well as how to make the existing machines in Ethernet and Ring network equally communicate with the machines equipped with ATM interface. LANE is implemented as a device driver below the network layer (shown in Fig.1.7).

![LANE protocol layer](image)

The ATM layer manages the header of ATM cell. It takes over the cell data sent by higher layer, adds the header, and then delivers the synthetic 53-bytes cell to the physical layer. Conversely, ATM layer accepts the ATM cell from physical layer, removes the header, and then gives the 48-bytes payload to higher layer. Although ATM layer can distinguish different QoS requirement according to the relevant information during establishing connection, it does not know what type of information is been transmitting. The layer above the ATM layer is ATM Adaptation Layer (AAL). AAL formats data to 48-bytes units to fit in ATM cells or assembles the individual cell payloads to original data conversely. Since ATM can transmit various types of information. There are various adaptation protocols in AAL. They can work simultaneously. AAL Type 5 is used to carry out LAN emulation. LAN emulation layer locates above AAL. In ATM LANE converter at network boundary, LAN emulation solves the data interconnection problems for all protocols. Its method is to establish the correspondence of MAC addresses and ATM addresses. LAN emulation is complete independent to upper layers, services and application software. Since LAN emulation only exists on boundary equipment and terminal system, it is completely transparent for ATM network as well as the machines in Ethernet and
Ring network. LAN emulation shields the details of connection establishment and hands shaking actions which are required by ATM switcher. It turns the networking protocol based on MAC address to ATM Virtual Circuit. Therefore ATM acts as a connectionless LAN. LAN emulation defines the service interface of IP protocol. Because the router has to be used, the bottleneck still exists, and the QoS cannot be guaranteed.

1.3.3 Classical IP over ATM (CIPOA)

IP protocol is not only the network layer protocol for Internet, but also the supporting protocol for many local area networks, and the foundation of communication platforms based on Unix operating system. Lots of existing application software of communication network is based on IP. If it’s possible to make IP protocol run on ATM communication platform and existing applications work continuously on ATM network, users’ investment can be protected best. IETF has defined standards for running IP on ATM platform. Two major documents are RFC 1483 and RFC 1577. RFC 1483 is mainly concerned with how to carry the various existing protocols of upper layers with AAL5. RFC 1577 is mainly concerned with how to find ATM addresses from IP addresses.

Figure 1.8 gives a sketch of the structure of an IP over ATM platform.
Every user equipment has two addresses: IP address and ATM address. The correspondences of these addresses are stored in the ATMARP Server. All users have established permanent or half permanent Virtual Channel Connections (VCC) to the ATMARP server in advance. Through these VCCs, users can enquire the addresses.

The brief communication process will be like this: If user \(s = 2, p = 1 \) has information to transfer to another user with IP address B, he checks first in his own ARP Cache to see whether there’s a established VCC to B. If the answer is yes, the communication can start directly. If no, it will use ATM ARP packet to ask the ATMARP server for the ATM address whose IP address is B. After the inquiry is successful, establish a VCC to user B by signaling. The protocol of address resolution and division of ATM stations refers to RFC 1577 and to RFC 1483 for the case of packet encapsulation with AAL 5.

CIPOA now has the following problems mainly: (1) IP is suitable for data exchange, not guaranteeing to satisfy users’ delay requirements. Theoretically, IP over ATM cannot support real time transmit for voice and video services, ATM’s support of real time service does not make sense. IETF has now made a kind of resource reservation protocol, RSVP, to make IP provide the real time service by pre-engaging the bandwidth. How to match RSVP and ATM signal is still a problem to be solved, however. (2) IP cannot offer different QoS for specific user, while ATM technology can make it by establishing virtual connection and allocate bandwidth for specific user through its signaling system. Such difference will eventually cause ATM not provide specific QoS for users. ATM’s support of multi-media services does not make sense either. IETF hope this can be solved in IPv6. (3) TCP realizes end-to-end flow control by sliding window mechanism. ATM realizes traffic policing with the Leaky-Bucket algorithm. The research of Bell laboratory discovered that if these two mechanism are used at the same time, the throughput of TCP will drop down greatly. (4) Whether IPOA is the only way of the cooperation of IP and ATM. Research is carried on to study whether it is possible to break the traditional layered structure to exploit the advantage of IP and ATM each fully. This project is named GIPR (Gigabit IP Router) (http://www.ccrc.wustl.edu/~jpgs/paper/network95.html), which started in
1995 in Washington University, US.

1.3.4 Multiprotocol Over ATM (MPOA)

To overcome the bottleneck problem caused by routers in LANE and CIPOA, ATM forum have put a new specification – Multiprotocol over ATM (MPOA). MPOA integrates the functions of LANE, CIPOA, NHRP (Next Hop-Routing Protocol) and MARS (Multicast address resolution server), supports various network protocol, translate the ATM address to MAC address directly, support MTU with variable length, introduces a virtual routing mechanism and supports to establish ATM virtual circuit directly between the hosts without the need to know the ATM addresses.

This is a MOPA Architecture shown in the following figure.

![MOPA Architecture](image)

1.3.5 Multiprotocol Label Switching (MPLS)

LANE, CIPOA and MPOA are all belong to the overlapping model. In the integrated model, the most promising candidate is MPLS. MPLS is a kind of tag switching. In tag switching systems, the edge routers map the third layer addresses of the input frames to simple tags, then encapsulate the frames to tagged ATM cells. The tagged ATM cells will be mapped to Virtual Paths and switched by ATM switches that have the ability of tag switching in the core network. The destination edge routers will remove the tags and reverse the frames to transfer to end-users. In short, route at
edge and switch in core.

The process of MPLS switching is completed normally through 4 steps:

- Use existing routing protocols, for instance, OSPF and IGRP etc. to establish the connection to the target network, then use label distribution protocol (LDP) to achieve the mapping of the target network to a label.
- Edge router at input end receives the packet, completes the functions of the third layer and tags the packets.
- Label switch switches the tagged packets.
- The edge router at output end removes the labels and transfers the packets to end-users.

In fact MPLS is not only a technology of IP over ATM, but also a network technology as a middle layer between layer 2 and layer 3 and a kind of architecture in research and development.

The characteristic of MPLS is as follows:

- The same to No.7 signaling system, every switch has the intelligence of layer 3 which make the reconnection possible. When major relay link arises fault, MPLS technology can minimize the interrupted service time by selecting another route to effuse the congested traffic and make the link quickly recover.
- MPLS uses labels as marks to seek the next hop in the routing table. This mechanism is suitable for high-speed relay, such as STM-4, STM-16 and STM-64.
- MPLS’s Classless Inter Domain Routing (CIDR) mechanism does not need 32–bits IP addresses. It is the concept of group address that can meet the fast increment of Internet user quantity.
- MPLS utilizes the VC Merge technique with which many VC with the same target can be mixed into one VC to save the VCI resource.
- ATM switch mixed with IP need not complex address resolution.
Chapter 2. Study on the next generation ATM

2.1 ATM’s Failure

ATM technology has developed greatly since the ITU-T decided to take it as the B-ISDN solution in later 1980s and has been put into operation since 1993. At that time, it has been regarded as the end technology of the public telecommunication networks. Through a unified user network interface, variable integrated services can be provided to business or familial users. In the beginning of 1990s, ATM had been even regarded as the upgrade of traditional LAN and acted as a very important role of computer network. Because of its importance, ATM standard is affected by various non-technical factors. The result is a political compromise in which many aspects are far from perfect. Specifically, there are the following points:

- ATM utilizes a single cell size to simplify the switch equipment. The selection of the cell size is the tradeoff between two conflicting requirements. One requirement comes from low-speed real-time service. It needs small cell size to guarantee short transfer delay. The size of 48 bytes was defined according to the requirement of 64Kbps PCM voice transmission without considering the development of digital voice coding and compression technology. Today, the transfer delay requirement for long distance transmission of 8Kbps voice or below cannot be satisfied by such cell size. The other requirement for the ATM cell size comes from large-volume data service. It needs large cell size to raise the transmission efficiency. But the ratio of 5 bytes header and 48 bytes payload is already far from satisfaction even the encapsulation expense in other layers are not counted in. In short, tradeoff policy only dissatisfies both sides.

- Today, the TCP/IP technology is the de-facto end standard for data transmission. ATM must support it smoothly. But all the exciting technologies such as RFC 1488, RFC 1577, LANE and MPOA are too complicated. They have over 20% encapsulation and protocol expense, low efficiency and high maintenance cost but
absolute QoS.

- ATM is an absolute connection-oriented technology. When use PVC, it’s so difficult to configure dynamically and the plug-and-play is impossible. Comparing to the flexible IP technology, the ATM network deployment includes complicated configuration to the switches. These complications limit the utilization of ATM

- It’s difficult for ATM to support bi-directional point-to-multi-points connection. In bi-directional point-to-multi-points connection, ATM cells sending from several points may interleave among each other when they arrive at the receiver. AAL 5 cannot reassemble these interleaved cells into their original message form.

For above reasons, although ATM technology has been put into operation for nearly ten years, it has never been a winner in desktop area. It also lost its bandwidth advantage when Giga bps Ethernet emerges and the transmission speed on fiber channel jumps up to more than 10 Gbps.

However, ATM technology has the irreplaceable advantages such as absolute QoS guarantee and intrinsic support for multi-services. Further more, the whole industry have put a lot of resource for the ATM technology from fundamental research to network infrastructure construction. It is not realistic to give up ATM technology thoroughly. Although the ATM protocol specification has been finalized, the only way to solve the problems for industrial application is to enhance the original protocol.

Based on above thinking, in this chapter, we compare the advantages and shortcomings of current IP and ATM network each, referring to ISO open network system model, proposed a novel cell structure model suits for the next generation ATM. And the method to overcome the shortcomings of current network will be discussed. New cell structure is downward compatible with current ATM cell standard.

2.2 Basic considerations

Considering the success of TCP/IP, TCP/IP protocol implements all the functions from routing to reliable transmission of application data. It shields the hardware
difference and details of infrastructure. TCP/IP is user oriented and can be implemented completely with software. It’s relatively easy to implement a TCP/IP stack in computer operation system. Therefore, it’s easy to popularize this technology. Being the most successful protocol in history, the TCP/IP traffic flows through the backbone network are increasing greatly. Because the IP protocol has the routing ability by itself, the propositions of IP Over SDH, IP over OPTICS are reasonable. In this point, removing the ATM layer in the current structure of IP/ATM/SDH is possible. So, the overlapping model indicated in chapter one is almost hopeless.

Comparing to IP protocol, ATM has its own addressing, routing ability. What it lacks is only the support for data stream transmission while TCP has. Therefore, we chose a new way similar but distinguish to the integrated model. That is to expand ATM protocol to enable it complete the functions of transmission layer and data link layer. So the expended ATM covers the functions of both IP and TCP and it is possible to avoid carrying the TCP/IP protocol.

Corresponding to the successful experience of TCP/IP, the new protocol can be firstly implement as a software protocol stack in computer operation system running on existing physical networks. After protocol gets popular, the hardware support for fully use of the protocol will appear naturally. So the upgrade of hardware equipment will be more smoothly. If this happens, ATM technology will not only realize the original intention to extend to desktop application but also exists longer. The research on such a kind of new protocol set is undoubtedly complicated. we referred to some examples that have identical research technique and purpose⁴⁵.

2.3 Cell structure

The most notable characteristic of ATM is the cell structure and the major problem also exists in this structure. Therefore, new design of cell structure is necessary. The standard cell structure is shown in Figure 2.1 2.2 and 2.3. The cell header formats in Network-Node Interface (NNI) and User-Network Interface (UNI) are similar. The only difference is the GFC section in UNI is replace by another 4 bits VPI in NNI. The General Flow Control (GFC) field is reserved in ATM standard. The
standardization organization encourages further research on its usage in applications. This field is not defined yet which means it can be utilized in the new standard.

The ATM address management method that is different from IP need not to allocate a fix for each network node. The VPI/VCI with addressing function is allocated dynamically in the connection establishment. The limit of address space in IPv4 doesn’t exist here and VPI/VCI does not have the requirement to extend.

There are some enhancements for QoS in IPv6 such as the Flow Label. These functions are completed in ATM by the negotiation before the establishment of connection. Then consider TCP fragment structure. There are no counterpoints in ATM to the sequence number and confirmation number of TCP. IP can not provide reliable connection. TCP has to achieve the reliability by confirmation and retransmission mechanism with these two fields. Although ATM protocol is designed mainly for high speed link that is above 155Mbps and these high speed link can guarantee very low transmission error with the fiber technology, so long as keeping the high link utilization, congestion and cell drop must exist and raise the transmission error. That is the major reason for ATM to carry TCP/IP to provide reliable transmission. Therefore for, one of most crucial probable improvements to ATM is to
add the correspondent control fields.

The problems of ATM technology problem also lie in the cell length. The length of 53 bytes is a tradeoff under some non-technical considerations and the technology development decades ago. First, 53 bytes cell size with 48 bytes payload meet the requirement of the voice coding standard, PCM 64kbps. With AAL0, AAL1 and AAL2, the biggest assemble delay is between 3-6 ms. But along with the development of data compression and the speech coding technology, bit rate greatly drops. Now, the standards being used widely are G.729 CS-ACELP 8kb/s, G.728 LD_CELP 16kb/s, G.723.1 MPC-MLQ 5.3&6.4kb/s, etc. Considering G. 729, coded frame length is 10ms, 10 bytes, even if a ATM cell carries only one frame with the efficiency of 20%, the adaptation delay is 10ms, reaches the lower limit of human discretion. Second, considering the aspect of computer data transmission, TCP/IP protocol is widely adopted. Statistics shows that 80% TCP segments are shorter than 512 bytes. Take a 512 bytes TCP segment for an example, the protocol expense can be calculated as the following table (unit is byte):

<table>
<thead>
<tr>
<th>Application Layer</th>
<th>TCP Layer</th>
<th>IP Layer</th>
<th>LLC encapsulation</th>
<th>AAL 5</th>
<th>ATM</th>
<th>Total Expense</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>512</td>
<td>532</td>
<td>552</td>
<td>560</td>
<td>576</td>
<td>636</td>
<td>124</td>
<td>80.5%</td>
</tr>
</tbody>
</table>

Such low efficiency is caused mainly by the ATM Cell header expense of 10%. Furthermore, a 512 bytes segment must be divide into more than 10 cells. Any of them loses will cause the retransmission of the whole 512 bytes segment. The efficiency will drop down further.

The contradiction is obvious that voice transmission requires smaller cells to guarantee some qualities but computer data transmission needs larger cells to improve the efficiency. If we adopt the variable length mechanism as it is in many computer communication protocols, the switch structure will be too complex and the advantage of hardware switching will lose. This problem was also discussed when ATM standard was defining. But it seems that the compromise is already outdated.

On the wireless and narrowband application field that ATM does not consider
originally, there are problems in the cell structure. Because of the high cost to establish B-ISDN network and the application bandwidth requirement, narrowband ATM network of 10Mbps or below has more demand. The research is also very active. B-ISDN transmission with fiber can guarantee the transmission error of 10^{-10} but narrowband ATM network usually utilizes rent channel or wireless channel with transmission error of 10^{-4} or 10^{-5}, sometimes up to 10^{-3}. Therefore, there are two problems must be considered. One is that it needs to reduce the cell size to satisfy the real-time service when the transmission delay increases in narrowband channel. The other is to strengthen the header error control (HEC) function.

Based on above considerations, the compromise to support two types of fixed cell length is reasonable. Two types of fixed length cell are designed. One of them is the Micro Cell to satisfy the time sensitive service. The other is the large cell to satisfy the mess computer date service. Two cells types are used at the same time. This design is shown as the following figures.

![Fig.2.4 Large Cell](#)

![Fig.2.5 Micro Cell](#)

![Fig.2.6 Macro Cell](#)

Two types of lengths are fixed respectively for 512 byte and 16 bytes. Hardware circuits in switching requirements without too many extra complications can still handle them. The details of two-level switching policy will be discussed in the following chapters specially.

The 16 bytes micro cell supports compressed voice data at very low bit rate. For
example, after encapsulating a G.729 frame, there are two more bytes surplus in the payload, which can be used for error detection and correction.

There are two types of cells whose length is 512 bytes, large cell and macro cell. Large cell carries data directly, mostly for computer data transmission. Because the payload field is extended greatly, the efficiency can reach more than 98%. Macro cell is used to pack micro cells. Because the length of micro cell is too short to fill enough information for switching, micro cell exists only in between terminal equipments (TE) and broadband network terminals (B-NT). In the transmission between NTs, micro cells must be packed into macro cells. One macro cell can contain 1~31 macro cells. Actual number should be decided by delay requirements. Besides real-time services, control cells such as RM cell also can be implemented by micro cell. For this reason, in practical operation, the fill ratio of macro cell will not be too low and if the delay requirement is strict, higher expense by low fill ratio is worthy.

The header structure of macro cell keeps uniform to the one of large cell by 8 bytes padding right after the header. So the switch can cut out the micro cells simply by hardware circuit. The usage of the padding field should be studied on and on. Maybe it can carry the checksum of the whole macro cell or the counter of packed micro cell.

2.4 Cell structure definition

Each field is explained as below:

- GFC, general flow control field. ATM standard does not fully use this field. In practical applications, these 4 bits are all set to 0. For the compatible reason, we make following definition: The first bit defines as the version specification. 0 indicates the existing version of ATM standard, 1 indicates the version of the next generation ATM. The second bit is reserved. The third and fourth bits indicate the cell type: 00 is large cell, 01 is macro cell, 10 is micro cell. The complete GFC field exists in all the three types of cells, which keeps the compatibility.

- VPI and VCI are extended to meet the network development. As long as the compatibility and the requirement of switching between edge terminal and home
edge switch can be satisfied, VPI/VCI can be shorten properly.

- **CTL**, an 8 bits control field includes the original Payload Type (PT) field and Cell Loss Priority (CLP) field to guarantee the compatibility. The usage of the extra 4 bits can be studied continuously.

- **GSN**, 12 bits general sequence number, which is defined by transport layer. For computer data, it can be defined as the sequence number in the unit of cell. Such a sequence number make it possible to implement reliable transmission by confirmation and retransmission without the help of TCP. For real-time applications, it can be treated as a generating-time-stamp for macro cell for reassembling of multiple data streams or transmission delay control. The field is one of the most important enhancements.

- **HEC**, 12 bits header error control. The header length is 8 bytes. With this field, 2 error bits can be corrected. The ability of error control is raised.

2.5 Switching Policy

The novel switching policy is designed for the two fixed cell sizes. To keep compatible, whenever a cell arrives in a switch, the GFC field is first read and different switching policy is applied to different cell type.

- The exchange of big cell is identical with traditional ATM cell. In backbone network, high speed can be achieved because the switches consider only one cell size.

- Macro cell acts as the tunnels for micro cells to be transferred across the backbone network. The home edge switch creates a tunnel when low-speed real-time connection is setup. And a macro cells are created whenever a micro cells needs it. The generation time can be recorded in the GSN field. New generated macro cell is not obligate to be sent off at once. It’s stored in a buffer until (a) the macro cell has lingered enough time, or (b) the macro cell has been filled by enough micro cells.

- Micro cell exists only between the end terminal and its home edge switch. When a micro cell arrives the edge switch, the edge switch sends it off directly if it’s
not going to the backbone networks. Otherwise, the edge switch search the buffer for a macro cell with the same direction and put the micro cell in its train. If there’s no matching macro cell, a new one will be created. When a macro cell arrives in the destination edge switch, its header is simply removed and the micro cells will be switched according to their own identifiers. Because the length of macro cell is integral multiple of the length of micro cell, it’s not too complicated to share the same buffer by the macro and micro cells in the edge switch.

2.6 Traffic Management

The existing ATM service classification is perfect enough to use continuously.

In traditional ATM, CBR, VBR and UBR are all non-control services. Only ABR has network-based traffic control. But the ABR service is quite complicated to implement and utilize. So it’s used in practice infrequently. Basically, it is the computer data transmission requires traffic management most. Currently, such services are handled as UBR service. The sliding windows mechanism of TCP implements the end-to-end traffic control.

Because of the introduction of the GSN filed as the sequence number, it’s possible to utilize the sliding window mechanism without the TCP layer. But we prefer the network-based traffic management for the connection-oriented character. New mechanism refers to the standard of ABR service. The aim is to simplify the operations. The name of ABR is inherited but there is a bit of difference.

Figure 2.7 CBR,VBR,ABR services share the bandwidth
Figure 2.8 Bandwidth share in ABR service

Each ABR flow can require a minimal cell rate and this minimal bandwidth will be guaranteed if the connection can be established. Then, ABR service uses rate-based flow control to realize the extra bandwidth fair share among each ABR connections. When congestion happens, the extra share should be cut down and the traffic source should be informed. The research focuses on two aims. One is the bandwidth fair share algorithm with fast convergence speed. The other is the efficient congestion indication mechanism.

Referring to the algorithms for traditional ABR service, the following schemes are designed.

A. Binary rate feedback

1. EFCI algorithm.

The basic thinking is that the ABR source sends one RM cell for every Nrm-1 data cells. There is a congestion indication bit, EFCI, in the header of the data cells. Initial value of the EFCI bit is zero. The switch may set it according to the local congestion situation. The destination saves the CI information when it receives the data cells. When RM cells are received, the CI information in them may be changed according to the saved CI information from data cells. The RM cells should be returned to the source to make it raise the current cell rate (CCR) when the CI bit is set or reverse. Traditionally, the value of Nrm is 32; RM cell and data cell have same length.

In our design, RM cell uses micro cell size. In order to reach the similar interval
of flow control, the value of Nrm must be reduced. For instance, the value of 8 is reasonable.

2. Enhanced EFCI algorithm.

EFCI algorithm is simple to implement that the switch may monitor the local congestion situation by comparing the shared buffer queue length to the threshold. But the feedback information to the source is too little. The source has no idea of the quantity of increase or decrease of CCR.

In our opinion, the enhancement is as follows:

RM cell does not send out from data source but directly from switches. It will speed up the congestion indicating process. The extra 4 bits in the CTL field of the cell header can be used as source distance indication (SD). It’s initialized to zero when sent off from the source. And it should be increased by one when passes a switch. The switch records the Max and Min distance (MAXD and MIND) it has ever seen in the cells past by.

when the switch determines congestion is occurring, it will send RM cell with congestion indication to every active connection. A relative change percentage will be carried too. This percentage is calculated by comparing the SD of the specific active connection to the MAXD and MIND that are recorded in this switch. The value is big when the SD this small, or vise versa. The source should change its CCR according to the relative change percentage in the received RM cells. In this way, the cell rate in the node near the congestion varies fast.

Considering the situation that the transmission delay can not be ignored and the congestion indication needs long time to be diffused, e.g. the practical wide area network (WAN), this policy should provide better equality of bandwidth share and speed of the elimination of congestion.

B. Explicit rate feedback

1. ERICA algorithm.

The basic thinking is that the source sends the RM cells as in EFCI algorithm. The ACR field takes the shoes of the CI bit. Its initial value is the PCR. The switching nodes in the network change the ACR field. When the RM cell comes
back to the source, the CCR of the source should be updated to the value of ACR.

The way to calculate the value of ACR is:

To calculate the current node load factor $z = \text{the sum of ABR input rates / ABR target bandwidth}$.

To calculate the Fair Share (FS) = ABR target bandwidth / he number of active ABR connections.

To calculate the virtual connection share, VcShare (VS) = CCR/z

To calculate the explicit rate (ER) of the current node, $ER = \min(PCR, \max(FS, VS))$.

To modify the RM cell: $ACR = \min(ACR, ER)$

2. Improved ERICA algorithm.

Refer to the calculating method of the explicit cells rate. The generation of RM cells is identical to the enhanced EFCI algorithm. The calculation of the ER value of the switching nodes is same to the above algorithm. The result of the ER value should be revised according to the source distance (SD) information which is described in the enhanced EFCI algorithm. The distance percentage, $\text{DistPerc} = \frac{\text{MAXD} - \text{SD}}{\text{MAXD} - \text{MIND}}$, $\Delta R = (ER - CCR) \times \text{DistPerc}$, $ER \rightarrow \Delta R + CCR$. Then, set the ACR of RM cell to the revised ER.

These algorithms require full simulations to evaluate.
Chapter 3. The simulation platform

There are two usual ways to have network research, the software simulation and small-scale test-bed. Though the latter can get the most actual test result, the cost is high and workload is large. It is used always in the final stage before the practical application. On the other hand, the computer simulation for theoretical research is inexpensive. If the software is designed considerately, the result is accurate and reliable enough. In this chapter, the simulation software design and its application to the research of next generation ATM are discussed.

3.1 The event-driven simulation mechanism

The network simulation can be implemented by different mechanisms:

(1) The algorithm simulation. It is the implementation of the algorithm by computer programming language. It focuses on the evaluation of the theoretic algorithm discarding any other practical disturbing effects.

(2) The mechanism based on numeric integral computing. The MATLAB10 is a typical example. There is a package named SIMULINK for the MATLAB to do the network and communication system simulation. Because the core mechanism of the MATLAB is numeric integral computing, the data transmission is simulated by the variation of signal voltage. It is obviously that it is far from efficient for the packet level simulation although it is suitable for the physical layer simulation.

(3) The event-based mechanism. In this method, the communication process is abstracted into discrete events. And the transmission data unit is described by high level data structure but the actual data. What is simulated is the interested part of the whole process. Others can be ignored. What is processed is the data structure but the actual data. So the efficiency can be improved greatly. This method is suitable for the research focus on the layers above the data link layer.
The third mechanism is most suitable for the research in this paper.

3.2 VNSim software design

In order to understand the principle of discrete event-driven simulation and study the simulation software design, the Visual Network Simulation (VNSim) is developed. The aim is to build a general framework for the discrete event-driven simulation. The specific simulation software such as network simulator can be implemented based on it. The intending features include extensibility by component based structure and the user-friendly interface by which user can achieve the modeling jobs easy, and monitor and control the simulation process. The development tool is Microsoft Visual C++ 5.0 on windows platform.

3.2.1 Theory

In the software simulation, the simulation time is not equal to the nature time. Otherwise, the simulation loses its meaning. So the software must implement a simulation clock. There are two ways to implement a clock. One is by a basic step. According to the requirement of precision, a minimum step is set. In the runtime of the software, when a step passes, the simulation clock passes a unit of time. The benefit of this type of realization is to simplify the design. It is widely used in the simulation of digital circuits, hardware description language (HDL), etc. Its disadvantage is the difficulty of choosing the step. In the situation that different actions to be simulated may takes widely variable time. The step is determined to the actions that need minimum time. But for the actions need long time, the efficiency is too low.

The other method is by an event queue. There is no fixed interval for time to pass on. The progress of the time is determined to the sequence that the events occur. Specifically, a global scheduling queue should be setup. Before the simulation starts, the earliest event is put in the queue. During the simulation, the simulator processes the events from the head of the queue one by one. For every event, the time of the next event that should happen is calculated. For example, after a data packet was
processed in a network node, the arrival time of it to the next node can be known by calculating the transmission delay. Then, the processed event is removed from the queue and the succeed event and its occurrence time are put into the queue. It is compared with the events waiting to be processed in the queue and inserted into the correct position according to the sequence of occurrence. When the simulator processes the event in the head of the queue, the simulation clock is set to the occurrence time of that very event. In this case, the progress of the simulation time is not even. The time in which no event occurs is skipped. So the CPU time is not wasted and the parallel events can be supported too.

3.2.2 Software design

Considering the Microsoft Windows is the most widely used platform and there are a lot of tools to help to build the graphical and user-friendly programs, the choice of Microsoft Visual C++ and Microsoft Foundation Classes (MFC) and reasonable.

This design fully uses the intrinsic message management of the windows operation system to avoid building a mechanism for the simulation event queue to accept and dispatch events. Further more, it takes advantage of its parallel process ability, the scalability and availability, the flexibility to different hardware of the operation system. The disadvantages are the requirement to understand the internal mechanism of the message process of the windows system deeply and the limit to apply to windows operation system family only.

In the implementation, a window realizes the interface of the simulation event queue. Every simulation module can have its own window. These windows play two roles; one is the user interactive interface to display the status of the module, e.g. the data income and outgoing, to accept the user control, e.g. the mouse click, drag and drop. The other is the interface to the event queue. The events are passed by the messages to the windows. There is a problem that must be considered carefully as what I mentioned above: the windows API provides several system calls to pass the message, the `SendMessage`, `PostMessage`, etc. their behaviors are different. In order to realize the parallel process, exact choices in different situations are important. And the
levels of the windows are different too. Unsuitable organization may lead to the loss of event and the chaos of the simulation.

All the simulation modules are implemented as the sub-classes of the MFC classes with the general abilities of event process, user interaction, etc. They can be foundation classes to inherit. Any developers with the knowledge of MFC development may easy build the functional classes to realize the specific simulation objects with Visual C++. The demand simulator can be built by recompiling these new classes with the implemented framework that has the monitor and control functions.

![Figure 3.1 Screen shot of the VNSim software.](image)

3.3 ns simulator

The software simulation have achieved great development. In some point of view, it is recognized as a new basic tool to understand the nature as mathematics and
There are more than 150 kinds of simulation systems for special or general purpose, covering all kinds of hardware platforms. They are implemented in C/C++, Fortran, Java, Tcl, etc. Some general purpose event-driven simulation frameworks are also available, e.g. the GPSS/H (http://www.wolverinesoftware.com/h1.htm). During decades of the development of the network, many simulation systems were also developed to satisfy the research requirement. For example, the BONeS from Candence for UNIX (SunOS) system, the Opnet for PC/Windows and the ns simulator for multiple platforms are common to see. These simulators have the following common features:

1. Suitable for high level network simulation. It is convenient for users to build the simulation scenes and environments. The setup of the simulation scene is similar to the actual network system, which makes it easy to understand and share.

2. The modularized implementation supports module reuse and redevelopment to keep up with the fast development and variation of the network system and research. Based on them, many validated work that realized specific and detailed network technologies are available.

3. Support standard input/output format to make it is possible to exchange data between different software.

3.3.1 Introduction

The Opnet and BONeS that we mentioned above are all commercial software with high price. It is not affordable by many academic researches. So the free and open source ns simulator is adopted in this paper.

The ns Network simulator has been developing since 1989 under the cooperation of the Xerox PARC and network research group (NRG), Lawrence Berkeley National Laboratory, ICSD, UC Berkeley. During decades of development, many extensions from different research organizations such as MIT and CMU are converged. Especially, the extension from Monarch Group of CMU makes the ns applicable to the wireless environments including wireless local area network (WLAN) (IEEE
802.11), multi-hop ad-hoc network, wired and wireless mixed network and Mobile IP. This software is free and open source software and widely used in academic communities. Currently, there are 28 projects in 7 types of subjects using the ns in the research according to its web site. Further developments for new versions and extensions are keep going. For example, the Parallel Distributed Network Simulator (PDNS) project in Georgia Tech. U.S. brings a powerful future to the ns.

3.3.2 How to get the ns

The ns used in this paper was fetched from the official web site of the ns in UC Berkeley (http://www-mash.cs.berkeley.edu/ns). The version is 2.1b6 that is released on Dec.19, 2000. The document referenced in this paper is the one released on Fed.25, 2000. Most of the software that is needed to install, compile and development can be downloaded from this site. Otherwise, some optional tools and documents need to be retrieved separately. They are the object-oriented extension to the TCL language, OTCL (ftp://ftp.tns.lcs.mit.edu/pub/otcl), Tcl/Tk language tools (http://www.scriptics.com), etc.

The ns is a open project. Any extended modules developed by the users can be handed over to the VINT group who is the current ns project maintainer if the users feel like to share the work with the whole community. The extension may be integrated to the new version of the ns simulator.

3.3.3 Installation on Linux

According to the experience of the VNSim development, we realized that the windows 98/95 platform is not stable enough for the research. Averagely, the system will down for every 72 hours when the simulation is running. Although the ns can be compiled on the windows system, the native development environment is UNIX like and the porting to windows is not perfect. Considering these factors, we choose the platform of GNU Linux operation system on Intel x86 PC. After evaluated 3 types of Linux distributions, Slackware 4.0, Turbo Linux 3.0, RedHat 6.1, we chose the last one according to the compilation and runtime performance of the ns. Specifically, the
platform is a PC compatible machine with a Pentium II 333 MHz CPU, 64 MB Memory, 4.3 + 8.2 GB IDE hard drivers, RedHat Linux 6.1, Kernel 2.2.12, GNU gcc C++ compiler version 2.91.66, Xfree86 3.3.5, Kdevelop C++ integrated development environment version 0.3.1. This machine also acts as a simulation server to provide remote service access to the ns for the other research project through the X Windows system.

There is a bug caused by a POSIX constant definition in ns version 2.1b5. We made a patch and it is confirmed by the version 2.1b6 after two month. The all-in-one package of the ns version 2.1b6 can be compiled successfully without any modification on the environment described above. The details can be refereed to the documents of the software. And all the development for this project are finished in this environment.

3.3.4 Analysis to the design of the ns

After the compilation and installation, the ns occupied about 200MB disk space. The source codes include 814 C++ files and 1003 TCL/OTCL files. Since the development is still in progress, the details of the analysis described here may be exact to the very version only.

The ns simulator has an entire object-oriented design. It is very interesting that it includes an object-oriented implementation of the TCP/IP protocol stack. The core structure is implemented in C++ and the OTCL engine is embedded to make the OTCL language as a scripting language to extend the system. OTCL (MIT’s Object Tool Command Language) is the object-oriented extension to the TCL language. The TCL language is a kind of interpretative language. The grammar is very simple and easy to study. It’s very suitable to embed to the software systems to provide a scripting mechanism to extend the system without modifications to the core part. In the ns simulator, OTCL language is used for the following purposes:

(1) To connect the C++ classes to make up the complete program.
(2) Some network simulation components are programmed by the combination of the there two languages. The part that needs to be modified frequently in the simulation...
can be implemented in OTCL. And the relative fixed part that requires complicated computation and high performance should be implemented in C++.

(3) To provide the user interface. Actually, a simulation scene description is a piece of OTCL codes. The network structure, the data traffic, the control and monitoring of the simulation are all OTCL statements. The whole ns simulator behaves like an extended OTCL interpreter.

The ns simulator is completely object-oriented. So the analysis starts with the class view.

An OTCL program being a simulation description is input into the ns simulator. It describes the network structure by connecting the classes that represent the actual network elements. The simulator interprets it and the simulation goes. In the runtime of a simplest simulation job, the existence of the objects in the memory is like what the Figure 3.2 illustrates.

![Figure 3.2 The object layout in the memory for a simplest simulation](image)

The two-way arrows represent the procedure of the control commands for the software. The thick one-way arrows are the data flow in the software layer. The thin one-way arrows represent the network transmission flow in the simulation view.

In every simulation job, there is only one global Simulator object. It controls the
whole simulation.

Class \textit{Application} is the representation of the application layer of the network. It generates the traffic and consumes it. Classes \textit{Agent} is the representation of the protocol stack. It can be understood as the protocol software in the hosts. Class \textit{Node} is the presentation of all kinds of network nodes in the network, e.g. all kinds of hardware, computer, switch, router, etc. The \textit{Application}, \textit{Agent}, \textit{Node} should work together. What connects them is the class \textit{Link}. \textit{Link} represents the data link. It is the combination of a group of software modules, the queues with all kinds of drop algorithms, transmission delay and error generators, etc.

The simulation users need only to set the connections between \textit{Agents} when they want to describe the data transmission in the network. Once the connections between the \textit{Nodes} and \textit{Links} are set, they are transparent to the data transmissions. It is same to the actual network that after the network is built, the data will be routed and transferred according to the protocols and the hardware configurations. The \textit{ns} implemented many kinds of routing algorithms to decide the physical paths made up with \textit{Nodes} and \textit{Links}.

The Node class is one of the most important and complex classes in the \textit{ns} system. Its internal structure is illustrated in the Figure 3.315.

![Figure 3.3 The internal structure of the Node class](image-url)

15Figure 3.3 The internal structure of the Node class
The classifier in above figure is used to route the data. What needs explanation is that in the wireless simulation, the Nodes are not connected by Links. The special wireless Nodes with the extra Link Delay, Address Resolution Protocol (ARP), Interface Queue, Media Access Control (MAC) Layer (IEEE 802.11), Network Interface, Radio Propagation Model and the Antenna Modules are connected to each other directly.

The Scheduler is a global class to schedule the events for the whole system. There are several schedule mechanism to be selected. The basic principle is to keep event that will occur most early in the head of the queue. The most important type of the events is the Packet in the ns. The Packet represents the transmission data unit, e.g. the IP packet and ATM cells. Under the scheduling of the Scheduler, data can be transferred from source to destination with accurate delay and errors. Generally, the data described in the Packets flows through the path illustrated in the Figure 3.2, but when the delay should be generated, the Packets will be passed to the Scheduler to schedule in the queue. At the exact moment, the Packets will be moved out of the queue and dispatched to the next node in the appropriate route.

3.3.5 Use of the ns

The main way to use the ns is the simulation description file. The file is a piece of OTCL program with appropriate procedures to create the Scheduler, Notes, Links, Agents and Applications, to generate the desired trace output, to monitor the interested variables and to start and stop the simulation. The ns documents include detailed guide to write such description files.

The simulation generates two types of output files. One is the log of the information of all the events including start time, finish time, etc. The Network Animator (NAM) tool in the ns package can replay the whole process of the simulation according to this event log. Every packet can be traced by this way. The other type of output is the file to record the variation of the given variables. These variables are always the key parameters of the algorithms or protocols to study. Such files can be analyzed by graph with the x-graph tool. Most of the graphs in this paper
are generated by these tools.

![Figure 3.4 Screenshot of the NAM tool](image)

3.3.6 Extending the ns

The major method to extend the ns is to use OTcl or C++ language to inherit the existing classes of the ns to implement new classes and recompile the software. Of course, the OTCL classes need not recompilation. The details will be discussed in the next section to discuss the implementation of the next generation ATM in the ns. The trunk of the class tree in the ns is illustrated in the Figure 3.5.

![Figure 3.5 some important classes and their inherited relationships in the ns](image)
3.3.7 Shortcomings of the ns

One shortcoming comes from the character of the free software. All the work from compilation to configuration has to be done by the users before it can do the desired simulation. And it is a big deal to do the development without technical supports and satisfying documentations.

The other shortcoming is its user interaction mechanism. All the controls are defined in the description file in advance. When the simulation starts, it cannot be interrupted and resumed. It is very inconvenient when the algorithm and protocol still need frequent modifications in the research or during the debug of the new extensions to the ns and the large-scale network scene. The solution to overcome this disadvantage may be the modification to the Scheduler to make the event scheduling can be interrupted and resumed just as what we did in the VNSim.

3.4 Extensions to the ns and the realization of the next generation ATM protocol

We have tried to extend the ns based on the version 2.1b5 and 2.1b6. More than 10,000 line of codes have been developed to implement the core of the next generation ATM protocols for the ns on the version 2.1b6 finally.

3.4.1 New ATM Cell

One of the characteristics of the ns is the Packet mechanism. Because it is not necessary to process the payload data of the data unit, only the header structure is worth considering. Different type of data unit has its own data structure to describe the organization of the whole unit. There is a list to carry such structures that describes this packet for different protocols. For example, the Packet to represent a TCP segment maintains a structure list that includes at east the IP structure and TCP structure. So the packet can be appropriately interpreted in both TCP and IP layer.

The new protocol is defined here, so the structure to represent the new ATM cell should be defined. Considering the research aims, we choose the following fields to
be described in the *Packet*. They are the VPI, VCI, CLP, GSN, FIN, DT, MICROCELLNUM and SEND_TIME. Some of them are just for the simulation, not exist in the actual protocol.

3.4.2 Implementation of the new *Agents*

The major work of the development is to implement the new *Agents*.

There are two important methods in the Agent class. They are *recv* and *sendmsg* methods. The *recv* is invoked by the *Scheduler* to pass the *Packets* and flags. Through this method, Agents accept the data to process with the appropriate protocol. The actions include feedback for retransmission or transferring the data to the application layer. The *sendmsg* method is called by the application layer indirectly. It accepts a number that means the length of the data block in byte.

In this project, 3 major *Agents* were implemented. They are WLATMAgent to realize the protocol stack for terminator, WLATMServer to realize the protocol stack that can handle multiple VC in terminator and WLATMSwitcher to realize the protocol stack for switch. In these *Agent* classes, the work of the AAL is done in their *sendmsg* method.

It is different to the implementation of the TCP/IP protocol stack. The TCP/IP packet can be sent at every moment if it wants. That is to say, the *sendmsg* method of the TCP/IP Agents may call the interface method of the Node class directly. But the transmission mechanism of ATM is different. The slots of the cells are fixed. The ATM cell cannot occur in the link at any moment. In order to simulate this, extra work should be done in the *sendmsg* method. The ATM cells are not passed to the *Nodes* simply. They should be cached in the buffer. On the other hand, a timer should be set with the interval that is calculated according to the cell length and link bandwidth. The timer fetches the cells from the buffer and passes them to the *Nodes*. The WLATMServer class to handle multiple VC is defined also for this reason. In the design of the ns, an *Agent* should handle only one connection. It needs not to know the information of the lower layer. But the *Agents* for ATM should get the information of bandwidth to calculate the interval for the timers. That is a way to
overcome the limit of the connectionless nature of the underlying mechanism of the ns simulator.

In the WLATMAgent and WLATMServer classes, the backward feedback mechanism for the retransmission is implemented. And a timer is set in the destination to resend the feedback when the desired response doesn’t arrive over-clocked. This is for the situation that the link is so congested that the feedback is dropped and the source cannot see the FIN flag. Without this mechanism, both sides will fall into endless wait in such case.

Because there is the network based traffic control in the switch, there is no need to implement an end-to-end flow control. This makes the Agents of the ATM protocol much simple than TCP.

3.4.3 Other modifications

For the special requirement of our research, some Application subclasses are also developed. They are the FTP, WebServer, WebClient and G.729 classes.

Another effort to implement the connection-oriented network on the ns is to add a call method in the Scheduler class to consult the parameters and establish the connection before the traffic is generated.

In order to make the ns know the new protocol, some constants and definitions should be added and modified. It is discussed in the documents of the ns.

If the C++ classes want to be seen by the OTCL, a “bind” must be done. Every C++ classes should have a “shadow” class which acts as a stub to the OTCL space. It exposes the members and methods to be accessed by the OTCL.

The major part of the work is summarized in Figure 3.6
3.4.4 Experience and conclusion

The combination of C++ and Otcl is an excellent character of the ns. Full utilization of the advantages of both languages makes the development more efficient and flexible. The OTCL as a scripting tool provides a powerful method to describe the simulation scene. Actually, the commercial product, Opnet, supports to output the ns compatible OTCL script to call the ns to do the simulation. But the combination also brings difficulties to the source level debug. It is impossible to trace into the OTCL runtime space.

The difficulties for debug are also caused by the lack of the interrupt and resume mechanism. It has to depend on the breakpoint mechanism of the C++ debugger. So the debug has to be done in a low level.

Further more, if the ns provides such a mechanism, during the simulation, user can interrupt the process and change the parameters and transmission data, then resume the simulation to see the influence of the modification. It is very useful when a simulation may take very long time.
In general, the ns simulator is a reliable and flexible system for the network simulation. And its open architecture is an ideal development platform to implement specialized functions to evaluate new ideas.
Chapter 4. Simulations for the next generation ATM

The simulations for the next generation ATM technology that is described in the chapter 2 with the simulation software that is introduce in the chapter3 will be discussed in this chapter.

4.1 Integrated services simulations

In this section, an integrated services network scene is designed and simulated. It aims to evaluate the extension of the ns simulator and the overall performance of the new protocol.

4.1.1 Simulation scene

The simulation scene is illustrated in the Figure 4.1. The boxes represent the switch nodes and the circles represent the network terminators.

![Figure 4.1 Integrated services simulation scene](image)

<table>
<thead>
<tr>
<th>Data links</th>
<th>Bandwidth</th>
<th>Transmission delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>sw1 – sw2</td>
<td>25 Mbps</td>
<td>10 ms</td>
</tr>
</tbody>
</table>
4.1.2 Simulation results

Analysis of transmission delay

The analyses focus on the delays on the destinations to evaluate the supports of

The traffic of the simulation is as follows:

1. Real-time service, G.729 compressed voice, bi-directional transmission. Simulation time is from 0.1s to 4.9s
 a1 <-> a1, a2 <-> a3, a14 <-> a11

2. WWW browse, asymmetrical bi-directional bursty data transmission. Simulation time is from 0.5s to 14.5s
 a4,a8 <-> s0; a5,a9 <-> s2

3. FTP traffic, unidirectional endless data transmission, simulated form 0.5s to 10s
 a6, a12 <-> s1; a7, a10 <-> s3

The bandwidth allocation policy in the switches is (a) fixed 12.5 Kbps for every type 1 connection, (b) guaranteed 8 Kbps for each type 2 connection and (c) 200 Kbps guaranteed for each type 3 connection. Each link reserves 10% bandwidth. The remaining bandwidth is ABR bandwidth to be shared within the type 2,3 connections.
the two representative services.

Figure 4.2 Cell delay of real-time service

Figure 4.3 Cells delay of FTP traffic
This scene tries to represent the wide area network (WAN) situation. The maximum link delay is over 30 ms. The switching delays are all 100 us in the switches.

Investigating Fig.4.2, 3 curves illuminate the cells delay of G.729 voice data flows through different numbers of switches and the network backbone. When through only one switch, the delay is below 10 ms; through 2 switches, it raises to 15 ms. The link transmission delay is the major part. The switches in the path are relative low load, so the delay jitter is quite small. These two situations cover about 4000 KM physical distances. Plus the voice coding time smaller than 15 ms, it is easy to satisfy the limit of 25 ms. The echo canceller is eliminated. The highest curve describes the delay in the connection through three switches, over 6000 KM. Some of the switched are very high load, so the delay jitter is larger. Considering the speed, only few CBR connections are set in the simulation. To keep necessary efficiency, the macro cell has to linger in the buffer of the edge switch for a long time, thus brings a relatively high delay jitter. In real case, every edge switches serves a lot of CBR
connections. It takes little to fill up a macro cell, thus results in a smaller delay jitter.

FTP and Web are another typical type of traffic. The major difference between them is the length of the data blocks. Comparing to CBR service, the delay is larger. The major factor of the delay is not the link delay but the switching delay. Furthermore, the delay jitter is large. The main reason that causes this is the queuing in switches. This is acceptable because the requirement for these parameters is relatively low.

Efficiency analysis

The investigation is focused on the switching nodes.

What this model considers is the wired wide area network. The error rates should be low. What causes the cells to be dropped is mainly the congestion that makes the buffer overflows in switches. In the simulation, the queue length in every switch is 100 cells. All the links share a common buffer.

![QueueLength](image)

Figure 4.5 Queue length in the switches
Figure 4.6 Dropped cells

Figure 4.7 Byte Passes
Fig. 4.5 shows the queue length of each switch. Fig 4.6 describes the drop of the cells. The drop policy is simple queue tail drop. It is obvious that the sw1 and sw21 are the bottlenecks. The queue length falls down after about 11s because the FTP traffic is terminated at 10s.

Figure 4.7 shows the transmission efficiency in each switch. Two groups of curves are the total number of bytes and bytes of the pure payload of the data cells. We can calculate the overall values after the whole simulation:

<table>
<thead>
<tr>
<th>Sw1</th>
<th>Sw2</th>
<th>Sw11</th>
<th>Sw12</th>
<th>Sw21</th>
</tr>
</thead>
<tbody>
<tr>
<td>87.37%</td>
<td>70.60%</td>
<td>85.33%</td>
<td>83.44%</td>
<td>90.32%</td>
</tr>
</tbody>
</table>

There are two factors that affect the efficiency. One is the feed up ratio of the macro cells. The other is the quantity of the resource management cells that is determined by the congestion situation and the algorithm.

In general, the efficiency is much higher than traditional ATM.

4.2 Wireless network simulation

4.2.1 Summary

One of the aims to study the next generation ATM is to employ the ATM technology in the wireless environment. Considering the characters of the wireless and narrow bandwidth wired channel, the new protocol has some special enhancements. One is to strengthen the head error control. The other is the error control of the whole cell. The large length of the macro and large cell can carry more error control information still with relative high efficiency. And the new GSN field makes it possible to feedback and retransmission. These enhancements may bring the ATM into the wireless environment.

For the micro cells that mainly dedicate to real-time services, error correction is enough. There’s no need to retransfer. Because the cell size is quite small, the effect to the user experience is small. Further more, we are thinking about another mechanism to make the time insensitive service to be transferred by the macro cell structure. So the retransmission unit can be the micro cell. The transmission efficiency
should be raised greatly.

4.2.2 Simulation model

![Simulation Model for high error rate channel](image)

Figure 4.8 Simulation Model for high error rate channel

In the model illustrated in Figure 4.8, the error rate of the link is 3×10^{-3}, Bandwidth is 2 Mbps, and Transmission delay is 0.33us (100m). Through error correction and retransmission, the desired output error rate is below 10^{-8}.

Traffic is as follows: s1 -> a1, one-way FTP transmission, simulation time is from 0.1s to 14.9s; a2 <-> s2, G.729 8Kbps two-way voice transmission, simulation time is from 0.1s to 14.9s.

The relationship of the number of error correction bit for 4096 bits block and the transmission efficiency is illustrated in Figure 4.9. The efficiency decline is partly owing to the error correction bits, partly to the retransmission. We select the peak of the curve that 243 monitor bits to correct 22 error bits. When error bits are more than 22, the ATM layer retransfers the cells directly.
In 128 bits micro cell, 16 monitor bits are set to correct 2 error bits and check more.

4.2.2 Simulation result

Delay analysis
Figure 4.10 and Figure 4.11 show the application data delay in a1 and a2. Delay jitter is caused by retransmission. Both the frequency and range of delay jitter are larger in a1. This is because both the error correction ability is weaker and the retransmission takes longer time. But not only the delay, but also the delay jitter is satisfied enough for computer data transmission.

The uncorrectable error cells are dropped without retransmission in a2. The delay jitter is limited to a coded frame that is 10ms in our model. There is little possibility to drop more cells continuously, so it won’t exceed the bottom limit of 20 ms of human distinguishing ability. It proves that the voice transmission in high error rate channel is acceptable.

Efficiency analysis

Figure 4.12 and Figure 4.13 illustrate the total bytes received by a1 and a2 and the correct bytes of pure payload. Calculation for the simulation result shows that, the efficiency in a1 is 97.70% and the one in a2 is 87.15%. They are much better than the case of traditional TCP/IP over ATM (refer to the second chapter).
Figure 4.12 Voice transmission efficiency

Figure 4.13 FTP transmission efficiency
CONCLUSION

ATM has not achieved its design target, which is to use one standard method to replace various incompatible network technologies. The reason lies on the fact that it can support neither data service, nor low-bit-rate voice efficiently. Upgrading is the only way that ATM could keep its existence.

This paper proposes a novel architecture for the next generation ATM, which adds a GSN field in the head of a prolonged ATM cell to reinforce the end-to-end error control ability, adopts micro cell outside the backbone networks to enhance the ability to support low-speed real-time service. Our proposal also considers the need for wireless environment.

In order to do the research, we study the network software simulation. And the necessary simulation tools are developed. Under the help of these tools, two typical wired and wireless models are simulated.

The analysis and simulation results show that, such a modification to the existing ATM protocol can overcome the shortcomings of it and upgrade its ability to support more services.
REFERENCES

2 MINGTIAN ZHOU, WENYONG WANG, *TCP/IP Principle and Technology*, Tsinghua University Press, Beijing, P.R.China, April, 1996.

10 ZHIYONG ZHANG, RUIZHEN LIU, ZUING YANG, *Mastering MATLAB*.
Beijing Aviation and Spaceflight University Press, Beijing, P.R.China, Aug.1997.

13 XIANGKE LIAO, Jun LUO, QINGBO TANG, Linux Maintenance and Development, People’s Post and Telecommunication Publishing House, Beijing, China, Sep.1999
